Constant scalar curvature Kähler metric and K-energy
نویسنده
چکیده
Based on Donaldson’s method, we prove that, for an integral Kähler class, when there is a Kähler metric of constant scalar curvature, then it minimizes the K-energy. We do not assume that the automorphism group is discrete.
منابع مشابه
K-stability of constant scalar curvature Kähler manifolds
We show that a polarised manifold with a constant scalar curvature Kähler metric and discrete automorphisms is K-stable. This refines the K-semistability proved by S. K. Donaldson.
متن کاملBlowing up Kähler manifolds withconstant scalar curvature, II
In this paper we prove the existence of Kähler metrics of constant scalar curvature on the blow up at finitely many points of a compact manifold which already carries a Kähler constant scalar curvature metric. Necessary conditions of the number and locations of the blow up points are given. 1991 Math. Subject Classification: 58E11, 32C17.
متن کاملThe Space of Kähler metrics
Donaldson conjectured[14] that the space of Kähler metrics is geodesic convex by smooth geodesic and that it is a metric space. Following Donaldson’s program, we verify the second part of Donaldson’s conjecture completely and verify his first part partially. We also prove that the constant scalar curvature metric is unique in each Kähler class if the first Chern class is either strictly negativ...
متن کاملPolarized 4-Manifolds, Extremal Kähler Metrics, and Seiberg-Witten Theory
Using Seiberg-Witten theory, it is shown that any Kähler metric of constant negative scalar curvature on a compact 4-manifold M minimizes the L-norm of scalar curvature among Riemannian metrics compatible with a fixed decomposition H(M) = H ⊕ H−. This implies, for example, that any such metric on a minimal ruled surface must be locally symmetric.
متن کامل